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Abstract 
 
Although the use of simulation to teach the sampling distribution of the mean is meant to provide 
students with sound conceptual understanding, it may lead them astray. We discuss a 
misunderstanding that can be introduced or reinforced when students who intuitively understand 
that Òbigger samples are betterÓ conduct a simulation to explore the effect of sample size on the 
properties of the sampling distribution of the mean. From observing the patterns in a typical 
series of simulated sampling distributions constructed with increasing sample sizes, students 
reasonablyÑ but incorrectlyÑ conclude that, as the sample size, n, increases, the mean of the 
(exact) sampling distribution tends to get closer to the population mean and its variance tends to 
get closer to 𝜎! 𝑛, where 𝜎! is the population variance. We show that the patterns students 
observe are a consequence of the fact that both the variability in the mean and the variability in 
the variance of simulated sampling distributions constructed from the means of N random 
samples are inversely related, not only to N, but also to the size of each sample, n. Further, 
asking students to increase the number of repetitions, N, in the simulation does not change the 
patterns. 
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1.  The Sampling Distribution of the Mean in the Classroom 
 
Sampling distributions are the bridge from summary and display of a random sample to inference 
about the population from which the sample was taken, so instructors in introductory statistics 
courses devote much time and effort to helping students understand them. Instruction usually 
focuses on the most important of sampling distributions, the sampling distribution of the mean, 
and its special case, the sampling distribution of the proportion. As preparation for statistical 
inference, students learn three properties of the sampling distribution of the mean: 
 

The sampling distribution of the mean (SDM), for random samples of size n selected from a 
population with mean µ  and (finite) standard deviation σ, has 
1. mean, µXn

, equal to the mean of the population: µXn
= µ . 

2. standard deviation, σ Xn
, equal to the standard deviation of the population divided by the 

square root of the sample size: ! Xn
= ! n . 

3. (Central Limit Theorem) a shape that is normal if the population is normal; for other 
populations with finite mean and variance, the shape becomes more normal as n 
increases. 
 

The first of these properties often is thought to be obvious to students, which perhaps it is for 
symmetric populations, so instruction centers on the second and third, which are of deeper 
theoretical interest. After all, ÒFor means, itÕs centered at the population mean. What else would 
we expect?Ó (De Veaux, Velleman, and Bock 2012, p. 442). Similarly, in an online textbook 
(Lane 2014), all three properties are stated, but only the second and third are justified. 
 
However, when the population is skewed, it certainly is not intuitively obvious to students that 
µXn

= µ . For example, we presented 40 post-calculus students taking introductory statistics with 

the skewed distribution of the salaries of National Basketball Association players (ESPN.com 
2013). After exploring the concept of a sampling distribution for various statistics, students were 
asked to predict whether the sampling distribution of the mean salary for n = 10 has a mean that 
is larger than, smaller than, sometimes larger and sometimes smaller than, or equal to the 
population mean of $4.5 million. Four students choose larger, 17 choose smaller (a sensible 
choice because most values in the skewed population are smaller than the mean), 8 choose 
sometimes larger and sometimes smaller, and only 11 of the 40 students correctly choose equal. 
Although they did not use this language, more than half of these post-calculus students thought 
that the mean of a random sample is a biased estimator of the mean of this population, at least for 
a sample size of 10. The choice of ÒsmallerÓ by so many students is consistent with a prediction 
by Chance, delMas, and Garfield (2004), which they base on classroom observations, 
contributions of colleagues, and analysis of student performance. 
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We gave a similar problem to 41 students in an introductory class without a calculus prerequisite, 
this time after instruction about the SDM. The results were better, but hardly impressive, with 
only 23 of the 41 students saying that µXn

= µ . 

 
Results such as these may be a consequence of a specific misunderstanding about the mean of 
the SDM (and, sometimes, about the standard deviation). Many students incorrectly believe that 
the first property is this:  
 

The mean, µXn
, of the SDM more closely approximates the mean, µ , of the population  

as the sample size increases. 
 

And, consistently, they also may incorrectly believe that the second property is this:  
 

The standard deviation, σ Xn
, of the SDM more closely approximates ! !  as the sample 

size increases. 
 
These misunderstandings may be invisible to the instructor because, in standard textbook 
exercises, the sample size is large enough for the Central Limit Theorem to come into play. With 
a large sample size, the student feels justified, not only in using a normal approximation to the 
SDM, but also in approximating µXn

 with µ  and ! Xn
 with 𝜎 𝑛 in needed formulas.  

 
How do these misunderstandings arise? One reason, the subject of this paper, is the use of 
simulation to demonstrate properties of the SDM. Other possible reasons will be discussed in 
Section 8. 
 
2.  Research About the Use of Simulation to Teach the SDM 
 
Students find the concept of sampling distribution difficult to grasp. Through the use of 
simulation, instructors hope to demonstrate the properties of the SDM in a hands-on and intuitive 
manner that promotes conceptual understanding and appeals to students. They find wide support 
for using simulation to teach the SDM in numerous papers, textbooks, and online applets.  

 
2.1.  Sampling Distributions Are Difficult to Understand 
 
Garfield and Ben-Zvi (2007) present an enlightening, and rather depressing, summary of the 
literature on how students learn statistics. For example, even students who complete an 
introductory college statistics course with high grades retain only a ÒdisappointingÓ conception 
of the mean, standard deviation, and Central Limit Theorem. 

 
Empirical research about specific conceptual difficulties among students is rare. In a thorough 
review of the literature on misconceptions about statistical inference published between 1990 and 
early 2006, Sotos, Vanhoof, Van den Noortgate, and Onghena (2007) found 500 references, but 
only 17 different research studies that provided empirical evidence (beyond personal 
observation) of misconceptions among university students. Those research studies confirm that 
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students find the concept of sampling distributions and, specifically, the sampling distribution of 
the mean and the Central Limit Theorem, difficult to understand. Students tend to confuse 
sampling distribution, distribution of a (data) sample, and distribution of the population. Further, 
many students ignore the effect of sample size on the variability of sample means. (See also, for 
example, delMas, Garfield, and Chance 1999, Doerr and Jacob 2011, and Noll and Sharma 
2014.) 

 
2.2.  Using Simulation to Teach the SDM Is Widely Recommended But Rarely 
Evaluated 
 
Since at least 1960, a vast number of articles have been published that recommend using 
simulation to teach the SDM, particularly the Central Limit Theorem, to introductory statistics 
students. Early articles include Jowett and Davies (1960) and, in an ASA journal, Gentleman 
(1977). Undoubtedly the most influential was the May 1971 statement of the Committee on the 
Undergraduate Program in Mathematics (1972, p. 490) of the Mathematical Association of 
America: 

 
Since the Central Limit Theorem should only be stated and not proved, evidence of its 
operation will need to be given to the student. Some texts contain exact sampling 
distributions for different sample sizes or the results of sampling experiments. Printouts of 
computer runs simulating sampling distributions for different sample sizes can also be 
distributed to students and discussed. If a computer is not available on campus, printouts 
could be obtained from a computer located elsewhere. 
 
These approaches are helpful but, in our opinion, are not as effective as having students 
participate in sampling experiments. A simple experiment is to sample a rectangular 
distribution, either from a table of random numbers, by drawing chips from a bowl, or by 
computer. If a computer is used, it will also be easy to sample other kinds of populations. 
Sampling a moderately skew population may help convince students of the Central Limit 
Theorem in the absence of symmetry. Indeed, the use of several populations (e.g., 
rectangular, exponential) can demonstrate to the student that the rapidity with which the 

sampling distribution of x − µ( ) ÷ σ n( )  approaches a normal distribution as n increases 

depends on the population from which the samples are selected. 
 

Echoing these recommendations, articles describe how to simulate the SDM using a wide variety 
of physical objects, a graphing calculator, or a computer. The demonstrations tend to use skewed 
or bimodal populations, so that students are impressed with the counter-intuitive result. 
Invariably, the authors anticipate that Òthe student will observe that the center of the distribution 
remains about the same and the distribution becomes narrower. That is, as sample size gets larger 
the approximations to the mean do not get better, but the variability about the mean decreases.Ó 
(Koehler 2006, pp. 264-265). 

 
Rarely is the method evaluated or compared with a non-simulation approach, either with respect 
to student time needed or as to how well students understand sampling distributions (Chance et 
al. 2004). The formal research that has been conducted to compare student understanding of 
sampling distributions following instruction with and without simulation generally has found no 
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difference or a modest difference in favor of simulation (Mills 2002; Meletiou-Mavrotheris 
2003; Chance et al. 2004; Pfaff and Weinberg 2009). 

 
2.3.  Previous Warnings about Simulation and the SDM 
 
While many researchers have discussed how misconceptions about sampling distributions can be 
challenged using simulation, we have found but two warnings about how conceptual difficulties 
can arise or be reinforced through the use of simulation. Hodgson and Burke (2000, p. 94) found 
that a computer simulation of the SDM resulted in 6 of their 18 students believing that Òone must 
draw multiple samples in order to make valid statistical inferences.Ó Hesterberg (1998) warns 
that simulations should have a large number of replications or else students Òmay have trouble 
distinguishing randomness due to random selection of data from randomness due to using small 
numbers of replications.Ó 

 
In Section 1, we described two misunderstandings we observed in our own students, that students 
believe that the mean of the SDM gets closer to the mean of the population as the sample size 
increases and the standard deviation gets closer to 𝜎 𝑛   as the sample size increases. Lunsford, 
Rowell, and Goodson-Espy (2006) observed the second of these misunderstandings among their 
post-calculus introductory statistics students: 

 
In addition, we believed that some of our students confused the limiting result about the 
shape of the sampling distribution (i.e. as n increases the shape becomes approximately 
normal, via the CLT) with the fixed (i.e. nonlimiting) result about the magnitude of the 
variance of the sampling distribution É 
 

While Lunsford et al. note this misunderstanding, they do not connect its formation to the use of 
simulation by their students. In the following sections, we will show that the combination of 
student intuition that Òlarger samples are betterÓ with the use of simulation turns out, not to be a 
marriage made in heaven for teaching the SDM, but rather a mismatch that leads some students, 
quite logically, into developing or reinforcing the misunderstandings described in Section 1 
about the first and second properties of the SDM. 

 
3.  Results from the Classroom About the Estimated Mean of the SDM 
 
Through an NSF-funded project, a professional development class was offered to a group of nine 
high school teachers, all of whom had some experience teaching statistics. The teachers spent 
five three-hour class meetings working on activities related to sampling distributions.  
 
At the end of the fifth meeting, the teachers worked individually with a familiar population with 
known mean and standard deviation, the skewed incomes of the residents of ÒMira Beach,Ó 
shown in Figure 1. They were asked to construct three simulated SDMs, for sample sizes of 5, 
15, and 30, using 100 random samples each, and to compute their means and standard deviations. 
The final task was, ÒCompare the three distributions that you constructed. What can you say 
about the shape of the distribution as the sample size, n, increases? What can you say about the 
mean? What can you say about the standard deviation?Ó 
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Figure 1. Incomes of the residents of ÒMira Beach,Ó with mean µ  = 27,394 and standard 
deviation !  = 42,572. 
 

 
 
When comparing the three simulated sampling distributions that they constructed, the teachers 
correctly were able to describe that, as the sample size increases, the variability of the simulated 
SDMs decreases and the shape becomes more approximately normal. However, when discussing 
the mean of the SDM, none of the teachers gave the description that we were expecting. Instead, 
most observed that the mean of the SDM tends to get closer to the mean of the population as the 
sample size increases. For example, the means of one teacherÕs three simulated sampling 
distributions are shown in Table 1. As the sample size increases, the means do, in fact, get closer 
to the population mean of 27,394. So the teacher wrote about the pattern in the three means of 
the SDMs,  
 

As expected when the sample size increases the mean approaches the true mean.  
 
Other teachers made similar statements, although several seemed surprised at the pattern they 
observed. 
 

Table 1.  Means of three simulated sampling distributions  
of the mean, each constructed using 100 random samples 

Sample Size 
Mean of 

Simulated 
SDM  

Absolute Difference of 
the Mean of the 

Simulated SDM and 
Population Mean 

5 23,472 3,922 
15 25,704 1,690 
30 27,601 207 

Population mean 27,394 
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In the next section we will show that the teachers were correct about the means of simulated 
SDMsÑ they do tend to get closer to the population mean as the sample size, n, increases. 
 
4.   Variability in the Mean of Simulated SDMs 
 
While theory tells us that the mean of the SDMÑ a parameterÑ is equal to the population mean 
for all sample sizes, we do not expect the mean of a simulated SDMÑ an estimate of the 
parameterÑ to be exactly equal to the population mean. What is unexpected is that if n1 > n2 , the 
mean of a simulated SDM constructed using N samples each of size n1 tends to be closer to the 
population mean, µ , than the mean of a simulated SDM constructed using N samples each of 
size n2 . We will prove this result about the mean in this section and prove a similar result about 
the variance of simulated SDMs in Section 7 by analyzing the five related distributions that are 
summarized in Table 2. 
 

Table 2. The five distributions with mean and variance 

Distribution Notation Mean Variance 

Population X µ  σ 2
 

SDM for samples of size n Xn  µXn
 = µ  σ Xn

2  = ! 2 n 

Simulated SDM from N 
samples each of size n 

Xn,N  xn,N  (varies) sn,N
2  (varies) 

Sampling distribution of the 
means of simulated SDMs 

Xn,N  E Xn,N( )  = µ  Var Xn,N( ) =σ 2 nN  

Sampling distribution of the 
variances of simulated SDMs 

Sn,N
2  E Sn,N

2( ) =σ 2 n  Var Sn,N
2( )  ≈ 2σ 4

n2 N −1( )  

(if Xn is approx. normal) 
 
So far, we have discussed two sampling distributions. The first is the (exact) SDM for samples of 
size n, denoted by Xn , which has mean µXn

= µ  and variance σ Xn
2  = ! 2 n. The second is a 

simulated SDM, constructed by taking N random samples of size n from the population and 
computing the mean of each. Equivalently, a more useful way to describe the simulated SDM is 
that it consists of N values taken at random from Xn .  
 

Our third sampling distribution will be the (exact) sampling distribution, Xn,N , of the means of 

simulated SDMs. Figure 2 shows Xn,N  for N = 100 samples of size n = 5, n = 15, and n = 30 
taken from the Mira Beach incomes. That is, each of the values in the histograms in Figure 2 is 
the mean of a simulated SDM constructed with N = 100 values randomly selected fromXn . Note 
how much closer the means of the simulated SDMs tend to be to the population mean,  
µXn

 = µ  = 27,394, as the sample size increases. 
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Figure 2. Three sampling distributions, Xn,N , of the means of simulated SDMs 
constructed using N = 100 samples taken from the Mira Beach incomes, for sample 
sizes of n = 5, 15, and 30. The vertical line is located at µXn

= µ  = 27,394. 
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More generally, because Xn,N is a sampling distribution of a mean, composed of the means of 
random samples of N values taken from Xn , we can apply the three properties in Section 1 to it.  

From the first property, Xn,N  has a mean equal to the mean of Xn , which is µ . That is, E Xn,N( )  

= µ . From the second property, Xn,N  has a variance equal to the variance of  divided by N,  

Var Xn,N( ) = σ 2 n
N

= σ 2

nN
 

 

Thus, for fixed N, as the sample size, n, increases, the variance of Xn,N  decreases. Finally, from 

the Central Limit Theorem, Xn,N  will be normal or approximately so for a reasonably large 
number of samples, N, even if the sample size, n, is small. 
 

It follows from the three properties of Xn,N  that the means of simulated SDMs do tend to get 
closer to the population mean, µ , as n increases, which is the pattern we see from the 
simulations summarized in Table 1. 
 
To look at it in a different way, the mean of a simulated SDM, constructed from N random 
samples each of size n, can be found either by averaging the means of the N samples or by 
averaging the nN individual values. For example, when teachers computed the mean of a 
simulated SDM constructed from 100 random samples of size 5, in essence they were estimating 

µXn
= µ  by averaging 500 randomly selected values. This observation makes it clear why Xn,N

is at least approximately normal and why nN is in the denominator of the formula for its 
variance.  
 
5.  The Simulation Cannot Be Fixed 
 
To ÒfixÓ the results of a simulation gone wrong, an instructorÕs first impluse is to increase the 
number of repetitions in the simulation (see Hesterberg 1998, as quoted in Section 2.3). 
Certainly, increasing the number of samples, N, means that the simulated SDM should better 

approximate the exact SDM and the size of the difference, xn,N − µ , where xn,N  is the mean of 

the simulated SDM, should get smaller.  But unfortunately, increasing N cannot change the 
pattern students see that the difference tends to become smaller with increasing sample size. 
 
As we saw in Section 4, both the sample size, n, and the number of samples, N, contribute to the 

precision of the estimate of µXn
, so no matter how large N is, the estimate, xn,N , of µXn

= µ  

from a simulation tends to be closer to µXn
= µ  for larger n than for smaller n. An even stronger 

statement is true: For any two sample sizes, n1 and n2, the ratio of the variances of Xn1,N  and 

Xn2 ,N  does not depend on N, 

Xn
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Var Xn1,N( )
Var Xn2,N( )

=
σ 2 n1N
σ 2 n2N

=
n2

n1  

 
The implications of this fact are illustrated by the graphs in Figure 3 of means of simulated 
SDMs plotted against sample size, one for N = 100 and the other for N = 10,000. With the 
rescaling of the vertical axis, the graphs show exactly the same pattern. For example, while both 

x20,N − µ  and x100,N ! µ
 
tend to be smaller for N = 10,000 than for N = 100, the probability that 

x20,N − µ  > x100,N ! µ  is the same for both N = 100 and N = 10,000.  

 
Figure 3 also suggests that the misleading pattern will be especially persuasive to students if they 
plot their estimated means against the sample sizes, as is sometimes recommended in the 
literature. For example, the plots of estimated means versus sample sizes in Renolls and Massay 
(1991, p. 72) and Mulekar and Siegel (2009, p. 37 and 40) show a clear trend for the means of 
the simulated SDMs to get closer to the population mean as the sample size increases. 
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Figure 3. Means, xn,N , of simulated SDMs plotted against sample size, n. Each point is 
a mean of the means of N random samples, each of size n taken from the Mira Beach 
incomes. The horizontal line is the population mean, µ = 27,394 . The curves are the 

graphs of xn,N = 27,394±1.96!" Nn , where !  = 42,572. The vertical axes are scaled 
to show that the pattern is similar for N = 100 and N =10,000. 
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6.  Results from the Classroom About the Estimated Standard Deviation of 
the SDM 

 
Similar to the behavior of the mean, the estimate, denoted sn,N , from a simulated SDM of the 

standard deviation of the SDM tends to be closer to σ Xn
= 𝜎 𝑛 when the simulated SDM is 

constructed using N larger samples than when constructed using N smaller samples. For 
example, the estimated standard deviations in Table 3 come from the work of the teacher whose 
means are given in Table 1.  
 

Table 3.  Comparison of the estimated standard deviation from three simulated SDMs, each 
constructed using N = 100 samples, with the standard deviation of the SDM computed using 
σ = 42,572  

Sample 
Size, n 

Standard Deviation 
Estimated from 

Simulated SDM, sn,N  

Standard 
Deviation of 

the SDM, 
𝜎 𝑛 

Absolute 
Difference 

sn,N −σ n  

Relative 
Difference 

sn,N −σ n

σ n
 

5 17,665.3 19,038.7 1,373.4 .072 

15 10,297.9 10,992.0 694.1 .063 

30 8,077.0 7,772.5 304.5 .039 
 
Similar to the case for the means in Table 1, the estimate from the simulated SDM of the 
standard deviation of the SDM gets closer to ! n  as the sample size increases. None of our 
teachers noticed this, however, because they were not prompted to compute the absolute or 
relative differences. Nor did we ask them to plot the estimates of the standard deviation from 
their simulated SDMs against the sample size n and compare to a graph of the exact standard 
deviation, as in Figure 4. Such graphs, however, are commonly recommended (see Renolls and 
Massay 1991 and Mulekar and Siegel 2009, for example), so it is quite possible that a perceptive 
introductory statistics student would observe that sn,N tends to get closer to 𝜎 𝑛 as the sample 
size increases and make the incorrect generalization observed by Lunsford et al. (2006, as quoted 
in Section 2.3).  
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Figure 4. Estimated standard deviations from Table 3 plotted against sample size, n. As n 
increases, the estimates tend to get closer to ! n , shown by the curve. 
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Now, consider the (exact) sampling distribution, Sn,N , of the standard deviations, sXn ,N , of 
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taken from the Mira Beach incomes. That is, each of the values in the histograms in Figure 5 is 
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Figure 5. Three sampling distributions of the standard deviations, sn,N , of simulated SDMs 
constructed using N = 100 samples taken from the Mira Beach incomes, for samples of size 
5, 15, and 30. The vertical line is located at 𝜎 𝑛. 
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More generally, suppose that the population, with mean µ  and standard deviation ! , is normal 

or the sample size n is large enough so that the SDM, Xn , is approximately normal. Let sn,N
2  be 

the variance of a simulated SDM, Xn,N , composed of N values randomly selected from Xn .  
 
The (exact) sampling distribution, Sn,N

2 , of the variances, sn,N
2 , is approximately normal for a 

large number of samples N, and has mean E Sn,N
2( ) =σ 2 n  and variance Var Sn,N

2( ) = 2σ 4

n2 N −1( ) . 

These follow because the ÒpopulationÓ Xn  is N µ,  σ 2 n( ) , so 
N −1( )Sn,N2
σ 2 n

 is χ 2  with (N Ð 1) 

degrees of freedom. 
 
First, Sn,N

2  is approximately normal for any reasonably large number of samples, N, because a 

χ 2  distribution with large degrees of freedom is approximately normal. Second, a χ 2  
distribution has a mean equal to its degrees of freedom, so, 

E
N −1( )Sn,N2
σ 2 n

⎛
⎝⎜

⎞
⎠⎟
= N −1   or  E Sn,N

2( ) =σ 2 n
 

 
(Alternatively, the mean comes from the fact that the sample variance is an unbiased estimator of 
the variance of its population, Xn .) Third, a χ 2  distribution has a variance equal to twice its 
degrees of freedom, so, 

Var
N −1( )Sn,N2
σ 2 n

⎛
⎝⎜

⎞
⎠⎟
= 2 N −1( )   or  Var Sn,N

2( ) = 2σ 4

n2 N −1( )  
 

The formulas for E Sn,N
2( )  and Var Sn,N

2( )  show that, for fixed N, the larger the sample size n, the 

closer sn,N
2  tends to be to σ 2 n . Further, for any two sample sizes, n1 and n2, the ratio of the 

variances of Sn1,N
2  and Sn2 ,N

2  does not depend on N, 

Var Sn1,N
2( )

Var Sn2 ,N
2( ) =

2σ 4

n1
2 N −1( )
2σ 4

n2
2 N −1( )

= n2
2

n1
2  

Thus, as with the mean, increasing the number of samples, N, does not change the pattern 
students see. 
 
8.  Discussion 
 
When using the properties of the sampling distribution of the mean, students must understand 
that, for all sample sizes, the mean of the SDM is (exactly) equal to the mean of the population 
and the standard deviation is (exactly) equal to 𝜎 𝑛. However, we have shown that from 
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observing the patterns in a typical series of simulated SDMs constructed using increasing sample 
sizes, students are led to conclude that the mean tends to get closer to the population mean as the 
sample size increases and the standard deviation tends to get closer to ! 𝑛 as the sample size 
increases. This creates a mismatch between the theory we want to teach and what students 
observe from their simulations. 
 
There are at least two reasons, other than simulation, why students may develop this 
misunderstanding.  One is that students have a tendency to believe that everything gets better 
with a larger sample size, which generally is a useful belief to hold. A second reason is the 
ambiguous summary of the properties of the SDM commonly found in textbooks:  
 

When n is sufficiently large, the sampling distribution of the mean is approximately normal 
with mean µ  and standard deviation  𝜎 𝑛.  
 

This statement inadvertently reinforces what students are likely to observe in their simulation, 
that n must be sufficiently large for each property to hold. 
 
What can be done by an instructor who wishes to use simulation to illustrate the properties of the 
SDM? We offer three choices, none of them ideal. First, an instructor who believes that honesty 
is the best policy could warn students that the pattern they see is an artifact of using simulation to 
construct an approximate SDM. The simple and intuitive argument that the mean of a simulated 
SDM, constructed from N random samples each of size n, can be found either by averaging the 
means of the N samples or by averaging the nN individual values makes it clear why the variance 
of a simulated SDM depends on both the sample size, n, and the number of samples, N. 
However, even this small amount of theory may be problematic for an introductory statistics 
class as the discussion would be time consuming and largely irrelevant to the goals of the course. 
 
Second, an instructor could push the bounds of the teaching axiom Òtell the truth, but not the 
whole truthÓ and use a very large number of samples, N, to construct each simulated sampling 
distribution. As we have seen, this does not change the pattern that, when N is fixed, the larger 
the sample size n, the more precise the estimate of µXn

= µ  tends to be and the closer the 

standard deviation of the simulated sampling distribution tends to be to 𝜎 𝑛. However with 
large enough N, the program could be set to display a small number of decimal places in 
summary statistics so that round-off error will obscure the pattern.  
 
Third, an instructor could use simulation only to introduce the Central Limit Theorem, justifying 
the first two properties by example or mathematical methods. For example, students could 
construct an exact sampling distribution from a small population, verifying that µXn

= µ  and 

σ Xn
=σ n . A caveat about this approach is that, when students list all possible samples from a 

finite population to justify that ! Xn
= ! n , their instructor would be forced to be explicit that 

the sampling must be done with replacement, which students find unrealistic and hence 
unconvincing.  The finite population issue can be dodged by using a probability distribution such 
as the mean of the rolls of two dice, but introductory students see such a distribution as different 
from a sampling distribution.  While mathematical proofs are beyond the introductory course, 
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some students are convinced by the argument that it is obviously true that µXn
= µ  and 

! Xn
= ! n  for the smallest possible sample size, n = 1.  

 
Whatever strategy the instructor chooses, it is especially important that he or she summarize the 
properties of the SDM to emphasize the role of sample size: 
 

 No matter what the sample size, n, the sampling distribution of the mean has mean µ  and 

standard deviation 𝜎 𝑛. The sampling distribution will be normal in shape if the 
population is normal; for other populations, the shape becomes more normal as n increases. 

 
In this paper, we have presented the mathematical reason why students who observe simulated 
sampling distributions of the mean may develop or reinforce the misunderstanding that the 

formulas for its mean and standard deviation, µXn
= µ  and ! Xn

= ! n , are exactly true only in 

the limit as n becomes large. While we know that this misunderstanding has occurred with some 
of our own students, we do not know the extent to which it occurs in general or whether it can 
develop solely as a result of simulation. Such a misunderstanding is unlikely to affect student 
performance in introductory classes because the sample size in textbook problems involving 
skewed distributions must be large enough for the Central Limit Theorem to ensure approximate 
normality of the SDM. However, such a misunderstanding may contribute to unwarranted 
distrust of statistical inference, especially when using small samples. Thus, we look forward to 
future research on studentsÕ thinking about the SDM and about how instructors can use 
simulation to teach the SDM without fostering such misunderstandings. 
 
We are sorry to present another instance where eternal vigilance is the price of teaching statistics. 
However, we hope we have convinced instructors, especially those who use simulation to 
illustrate the properties of the sampling distribution of the mean, to be alert to the fact that 
students may apply the heuristic that otherwise serves them well, Òbigger samples are better,Ó to 
decide when they can use the formulas for the mean and standard deviation of a sampling 
distribution. 
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