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Abstract

Although the use of simulation to teach the sampling distribution of the mean is meant to provide
students witlsound conceptual understanding, it may lead them astray. We discuss a
misunderstanding that can be introduced or reinforced when students who intuitively understand
that Obigger samples are betterO conduct a simulation to explore the effect of samptaeize
properties of the sampling distribution of the mean. From observing the patterns in a typical
series of simulated sampling distributions constructed with increasing sample sizes, students
reasonablid but incorrectiiN conclude that, as the sample sizencreases, the mean of the

(exact) sampling distribution tends to get closer to the population mean and its variance tends to
get closer tw? /n, whereo? is the population variancé/e show that the patterns students

observe are a consequence offtat that both the variability in the mean and the variability in

the variance of simulated sampling distributions constructed from the meldmaraiom

samples are inversely related, not onl\tdout also to the size of each samplg;urther,
askingstudents to increase the number of repetitibig) the simulation does not change the
patterns.
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1. The Sampling Distribution of the Mean in the Classroom

Sampling distributions are the bridge from summary and display of a random samfaectace
about the population from which the sample was taken, so instructors in introductory statistics
courses devote much time and effort to helping students understand them. Instruction usually
focuses on the most important of sampling distributitres sampling distribution of the mean,
and its special case, the sampling distribution of the proportion. As preparation for statistical
inference, students learn three properties of the sampling distribution of the mean:

The sampling distribution of thmean (SDM), for random samples of sizgelected from a
population with mearnu and (finite) standard deviatias has
1. mean,u; , equal to the mean of the populatiqn;?'n =Uu.

2. standard dewation, Oy equal to the standard deviation of the population divided by the

square root of the sample siZe; =/ JNn.

3. (Central Limit Theorem) a shape that is normal if the population is normal; for other
populatiors with finite mean and variance, the shape becomes more normal as
increases.

The first of these properties often is thought to be obvious to students, which perhaps it is for
symmetric populations, so instruction centers on the second and third, wehimfdaeper

theoretical interest. After all, OFor means, itOs centered at the population mean. What else would
we expect?@e Veaux, Velleman, and Bock 2Q1® 442). Similarly, in an online textbook

(Lane 2014, all three properties are stated, but only the second and third are justified.

However, when the population is skewed, it certainly is not intuitively obvious to students that
My = . For example, & presented 40 pesalculus students taking introductory statistics with

the skewed distribution of the salaries of National Basketball Association pl&g#$i(com

2013. After exploring the concept of a sampling distributionvarious statistics, students were
asked to predict whether the sampling distribution of the mean salaryfb® has a mean that

is larger than, smaller than, sometimes larger and sometimes smaller than, or equal to the
population mean of $4.5 mitln. Four students choose larger, 17 choose smaller (a sensible
choice because most values in the skewed population are smaller than the mean), 8 choose
sometimes larger and sometimes smaller, and only 11 of the 40 students correctly choose equal.
Althoughthey did not use this language, more than half of thesecptistlus students thought

that the mean of a random sample is a biased estimator of the mean of this population, at least for
a sample size of 10. The choice of OsmallerO by so many studensssient with grediction

by Chance, delMas, and Garfield (200dhich they base on classroom observations,

contributions of colleagues, and analysis of student performance.




Journal of Statisti Education, Volume 22, Number 3 (2014

We gave a similar problem to 41 studentamnintroductory class without a calculus prerequisite,
this time after instruction about the SDM. The results were better, but hardly impressive, with
only 23 of the 41 students saying that = .

Results such as these may be a consequence of a specific misunderstanding about the mean of
the SDM (and, sometimes, about the standard deviation). Many students incorrectly believe that
the first property is this:

The meanu; , of the SDM more closely approximates the meanpf the population
as the sample size increases.

And, consistently, they also may incorrectly believe that the second property is this:

The standard deviatiom;; , of the SDM more closely approximategy! as the sample
Size increases.

These misunderstandings may be invisible to the instructor because, in standard textbook
exercises, the sample size is large enough for the Central Limit Theorem to comeyinidihla
a large sample size, the student feels justified, not only in using a normal approximation to the

SDM, but also in approximating; with y and! ; with o/v/nin needed formulas.

How do these misunderstandings arise? One reason, the subject of this paper, is the use of
simulation to demonstrate properties of the SDM. Other possible reasons will be discussed in
Section 8.

2. Research About the Use of Simulation to Teach the SDM

Students find the concept of sampling distribution difficult to grasp. Through the use of

simulation, instructors hope to demonstrate the properties of the SDM in adraadd intuitive
mannerthat promotes conceptual understanding and appeals tostudleey find wide support
for using simulation to teach the SDM in numerous papers, textbooks, and online applets.

2.1. Sampling Distributions Are Difficult to Understand

Garfield and Berzvi (2007)present an dightening, and rather depressing, summary of the
literature on how students learn statistics. For example, even students who complete an
introductory college statistics course with high grades retain only a OdisappointingO conception
of the mean, standadviation, and Central Limit Theorem.

Empirical research about specific conceptual difficulties among students is rare. In a thorough
review of the literature on misconceptions about statistical inference published between 1990 and
early2006,Sotos, Vanhoof, Van den Noortgate, and Onghena (Z00@y 500 references, but

only 17 different research studies that provided empirical evidence (beyond personal
observation) of misconceptions among university students. Thoseaestudies confirm that
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students find the concept of sampling distributions and, specifically, the sampling distribution of
the mean and the Central Limit Theorem, difficult to understand. Students tend to confuse
sampling distribution, distribution of(@ata) sample, and distribution of the population. Further,
many students ignore the effect of sample size on the variability of sample means. (See also, for
exampledelMas, Garfield, and Chan&©99 Doerr and Jacob 201&andNoll and Sharma

2014)

2.2. Using Simulation to Teach the SDM Is Widely Recommended But Rarely
Evaluated

Since at least 1960, a vast number of articles have been publishexttmatrend using
simulation to teach the SDM, particularly the Central Limit Theorem, to introductory statistics
students. Early articles includewett and Davies (196@hd, in an ASA journalsentleman
(1977) Undoubtedly the most influential was the May 1971 statement &dhenittee on the
Undergraduate Program in Mathematics (1972, p. dBthe Mathematical Association of
America:

Since the Central LimiTheorem should only be stated and not proved, evidence of its
operation will need to be given to the student. Some texts contain exact sampling
distributions for different sample sizes or the results of sampling experiments. Printouts of
computer runs siolating sampling distributions for different sample sizes can also be
distributeal to students and discusseda ifiomputer is not available on campus, printouts
could be obtained from a computer located elsewhere.

These approaches are helpful but, in our opinion, are not as effective as having students
participate in sampling experiments. A simple experiment is to sample a rectangular
distribution, either from a table of random numbers, by drawing chips from adroyl,
computer. If a computer is used, it will also be easy to sample other kinds of populations.
Sampling a moderately skew population may help convince students of the Central Limit
Theorem in the absence of symmetry. Indeed, the use of several mysuf{aty.,

rectangular, exponential) can demonstrate to the student that the rapidity with which the

sampling distribution ofx — ) +(c/+/n) approaches a normal distributionreiscreases
depends on the population from which the samples &eted.

Echoing these recommendations, articles describe how to simulate the SDM using a wide variety
of physical objects, a graphing calculator, or a computer. The demonstrations tend to use skewed
or bimodal populations, so that students are impresghdive counteintuitive result.

Invariably, the authors anticipate that Othe student will observe that the center of the distribution
remains about the same and the distribution becomes narrower. That is, as sample size gets larger
the approximations tthe mean do not get better, but the variability about the mean decreases.O
(Koehler 2006 pp. 264265).

Rarely is the method evaluated or compared with asnonlation approacleither with respect

to student time needed as to how well students understand sampling distributiGharfce et

al. 2009. The formal research that has been conducted to compare student understanding of
sampling distributions following instruction with and with@utulation generally has found no
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difference or a modest difference in favor of simulatidill§ 2002; MeletiouMavrotheris
2003 Chance et al. 2004faff and Weinberg 2009

2.3. Previous Warnings about Simulation and the SDM

While many researchers have discussed how misconceptions about sampling distributions can be
challenged using simulation, we have found but two warnings about how conceptual difficulties
can arise or be reinforced through the use of simulatodgson and Burke (2000, p. $éund

that a computer simulation of the SDM resulted in 6 of their 18 students believing thatu3one

draw multiple samples in order to make valid statistical inferenetssterberg (1998yarns

that simulations should have a large number of replications or else students Omay have trouble
distinguishing randomness due to random selection of data from randomness due to using small
numbers of replications.O

In Secton 1, we described two misunderstandings we observed in our own students, that students
believe that the mean of the SDM gets closer to the mean of the population as the sample size
increases and the standard deviation gets clogefta as the samplez increased.unsford,

Rowell, and GoodscEspy (2006 pbserved the second of these misunderstandings among their
postcalculus introductory statistics students:

In addition, we believed that some of our students caufiuhdimiting result about the
shape of the sampling distribution (i.e.rescreases the shape becomes approximately
normal, via the CLT) with the fixed (i.e. nonlimiting) result about the magnitude of the
variance of the sampling distribution E

While Lunsford et al. note this misunderstanding, they do not connect its formation to the use of
simulation by their students. In the following sections, we will show that the combination of
student intuition that Olarger samples are betterO with the irseilation turns out, not to be a
marriage made in heaven for teaching the SDM, but rather a mismatch that leads some students,
quite logically, into developing or reinforcing the misunderstandings described in Section 1

about the first and second propestad the SDM.

3. Results from the Classroom About the Estimated Mean of the SDM

Through an NSHunded project, a professional development class was offered to a group of nine
high school teachers, all of whom had some experience teaching statistitsadrtexs spent
five threehour class meetings working on activities related to sampling distributions.

At the end of the fifth meeting, the teachers worked individually with a familiar population with
known mean and standard deviation, the skewed ins@fiine residents of OMira Beach,O

shown inFigure 1 They were asked to construct three simulated SDMs, for sample sizes of 5,

15, and 30, using 100 random samples each, and to compute their means and standard deviations.
The final task was, Compare the three distributions that you constructed. What can you say

about the shape of the distribution as the samplersirgreases? What can you say about the

mean? What can you say about the standard deviation?0
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Figure 1. Incomes of the residents of OMira Beach,0 with mear27,394 and standard
deviation! =42,572.
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When comparing the three simulated sampling distributions that they constructed, the teachers
correctlywere able to describe that, as the sample size increases, the variability of the simulated
SDMs decreases and the shape becomes more approximately normal. However, when discussing
the mean of the SDM, none of the teachers gave the description that wexpertng. Instead,

most observed that the mean of the St2hds to get closdo the mean of the population as the
sample size increases. For example, the means of one teacherOs three simulated sampling
distributions are shown ihable 1 As the sample size increases, the means do, in fact, get closer

to the population mean of 27,394. So the teacher wrote about the pattern in the three means of
the SDMs,

As expected when the sample size increases the mean approaches thartrue me

Other teachers made similar statements, although several seemed surprised at the pattern they
observed.

Table 1. Means of three simulated sampling distributions
of the mean, each constructed using 100 random samples

Absolute Difference of

Mean of
Sample Size Simulated _the Mean of the
SDM Slmulatec_i SDM and
Population Mean
5 23,472 3,922
15 25,704 1,690
30 27,601 207

Population mean 27,394




Journal of Statisti Education, Volume 22, Number 3 (2014

In the next section we will show that the teachers were correct about the msianslated
SDMsN theydotend to get closer to the population mean as the samplasizereases.

4. Variability in the Mean of Simulated SDMs

While theory tells us that the mean of the Sl parameté\ is equal to the population mean
for all sample sizes, we dmt expect the mean of a simulated SN estimate of the
parameteX to be exactly equal to the population mean. What is unexpected is thatif , the

mean of a simulated SDM constructed usihgamples each of sizgtends to be closer to the
population meany, than the mean of a simulated SDM constructed usisamples each of
sizen, . We will prove this result about the mean in this section and prove larsigsult about

the variance of simulated SDMs in Section 7 by analyzing the five related distributions that are
summarized imable 2

Table 2. The five distributions with mean and variance

Distribution Notation Mean Variance
Population X u o’
SDM for samples of size X Uy = U g§ =1?%/n
Simulated SDM fronN X, , Xan (varies) S.n (varies)
samples each of size
Sampling distribution of the XN E(?;v) = u Var(inN) —5%/nN
means of simulated SDMs ' ’ ’

20

n*(N-1)
(if X, is approx. normal)

Sampling distribution of the SZ, E(SfN) = 6%/n Var(SzN) -
variances of simulated SDMs ’ ’ "

So far, we have discussed two sampling distributions. The first is the (exact) SDM for samples of
sizen, denoted byX, , which has meanu; =y and variance')';n =1 ?/n. The second is a

simulated SDMconstructed by takiny random samples of sizefrom the population and

computing the mean of each. Equivalently, a more useful way to describe the simulated SDM is
that it consists o values taken at random from, .

Our third sampling distribution will be the (exact) sampling distributgmm , of the means of

simulated SDMs. Figure 2 ShOV\)ZSn,N for N =100 samples of size= 5,n = 15, anch = 30
taken from the Mira Beach incomes. That is, each of the values in the histograms in Figure 2 is
the mean of a simulated SDM constructed With 100 values randomly selected frotn Note

how much closer the means of the sintedaSDMs tend to be to the population mean,
Uy = u =27,394, as the sample size increases.
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Figure 2. Three sampling distributions)zin,N , of the means of simulated SDMs
constructed usmN = 100 samples taken from the Mira Beach incomes, for sample

sizes ofn = 5, 15, and 30. The vertical line is locatedugt = u = 27,394.
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More generally, becausin,N is a sampling distribution of a mean, composed of the means of
random samples & values taken fronX, , we can apply the three properties in Section 1 to it.

From the first property?n,N has a mean equal the mean ofX, , which is u. That is,E(Xn,N)

= u. From the second property=<n,N has a variance equal to the varianceXpfdivided byN,

= ) o’/n_ o’
N nN

Var(X,,,N =

Thus, for fixedN, as the sample size, increases, the variance ﬁfn,N decreases. Finally, from

the Central Limit Theorem?w will be normal or approximately so for a reasonably large
number of sample$\, even if the sample size, is small.

It follows from the three properties §n,N that the means of simulated SDMs do tend to get
closer to the populein mean,u, asn increases, which is the pattern we see from the
simulations summarized in Table 1.

To look at it in a different way, the mean of a simulated SDM, constructed\fr@amdom

samples each of size can be found dier by averaging the means of tlieamples or by

averaging th@N individual values. For example, when teachers computed the mean of a
simulated SDM constructed from 100 random samples of size 5, in essence they were estimating

Hg = H by averaging 500 randomly selected values. This observation makes it cIe?rn,why

is at least approximately normal and wiiYis in the denominator of the formula for its
variance.

5. The Simulation Cannot Be Fixed

To OfixO the results of a simulation gone wrong, an instructorOs first impluse is to increase the
number of repetitions in the simulation (3éesterberg 199&s quoted in Section 2.3).
Certainly, increasing the numbersaEmplesN, means that the simulated SDM should better

approximate the exact SDM atitk size of the differenc#x:n,;v —u‘ , where;n,N Is the mean of
the simulated SDM, should get smaller. But unfortunately, incrgé&scannot change the
pattern students see that the difference tends to become smaller with increasing sample size.

As we saw in Section 4, both the sample sizend the number of samplés,contribute to the
precision of the estimate @f; , so no matter how lardé s, the estimatey, v , of My = U

from a simulatiortends to be closer ta, = u for largern than for smallen. An even stronger

statement is true: For any two sample simgandn,, the ratio of the variances &, ~ and
X,,~ does not depend d

1C
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Var(an,N) _ Gz/l’llN _&

Var (an,N ) O'Z/nzN n

The implications ofhiis fact are illustrated by the graphs in Figure 3 of means of simulated
SDMs plotted against sample size, oneNer 100 and the other fod = 10,000. With the
rescaling of the vertical axis, the graphs show exactly the same pateexample, while dth

Xoow — u\ and|xwoon ! u\ tend to be smaller fox = 10,000 than foN = 100, the probability that

Xo0n —u‘ > | X1o0n ! u‘ is the same for botN = 100 and\ = 10,000

Figure 3 also suggests that the misleading pattern will be especially persuasive to students if they

plot their estimated means against the sample sizes, as is sometimes recommended in the
literature. For example, the plots of estimated means versus ssirgdenRenolls and Massay
(1991, p. 72pandMulekar and Siegel (2009, p. 37 and 4Bdw a clear trend for the means of
the simulated SDMs to get closer to the population me#imasample size increases.

11
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Figure 3. Means,;n,N , of simulated SDMs plotted against sample siz&ach point is
a mean of the means Rfrandom samples, each of siztaken from the Mira Beach
incomes. The horizontal line is tpepulation meany =27,394 . The curves are the

graphs ofgzc,,,N =27,394+1.96!" /\/Nn , Where! =42572. The vertical axes are scaled
to show that the pattern is similar fdr= 100 and\ =10,000.

N=100

31000 |
30000 |
29000 | ..

28000 | - i

27000 - =

26000 —

Mean of Simulated SDM

25000 | /.

24000 —

I I I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

Sample Size, n

N=10,000

27700 -
27600

27500 - ¢

27400 | %

27300 4 "

Mean of Simulated SDM

27200 .*

27100 — °

27000 — \ \ \ \ \ \ \ \ \ \
0 20 40 60 80 100 120 140 160 180 200

Sample Size, n

12



Journal of Statisti Education, Volume 22, Number 3 (2014

6. Results from the Classroom About the Estimated Standard Deviation of
the SDM

Similar to the behavior of the mean, the estimate, dengtedfrom a simulated SDM of the
standard deviation of the SDM tends to be closersto= g/v/n when the simulated SDM is

constructed usinlyl larger samples than when constructed ublrsgnaller samples. For
example, the estimated standard deviations in Table 3 come from the work of the teacher whose
means are given in Table 1.

Table 3. Comparison of the estimated standard deviation from three simulated SDMs, each
constructed usinyl = 100 samples, with the standard deviation of the SDM computed using
o =42,572

Relative

Standard Deviation St_anqard Absolute Difference

Sample Estimated from Deviation of Difference I

Sizén  simulatel SDM, s, , the SDM, sy—0/Nn] a0 Z
’ o/\n ’ o/n
5 17,665.3 19,038.7 1,373.4 .072
15 10,297.9 10,992.0 694.1 .063
30 8,077.0 7,772.5 304.5 .039

Similar to the case for the means in Table 1, the estimate from the simulated SDM of the
standard deviation of the SDM gets closer M as the sample size increases. None of our
teachers noticed this, however, because Weg not prompted to compute the absolute or
relative differencedNor did we ask them to plot the estimates of the standard deviation from
their simulated SDMs against the sample siaead compare to a graph of the exact standard
deviation, as in Figuréd. Such graphs, however, are commonly recommendedRésesls and
Massay 199hndMulekar and Siegel 200%r example), so it is quite possible that a perceptive
introductory stasitics student would observe that, tends to get closer to/+/n as the sample

size increases and make the incorrect generalization obserteddfprd et al. (2006as quoted
in Section 2.3).

13
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Figure 4. Estimated standard deviations from Table 3 plotted against sample. $\za
increases, the estimates tend to get closer/tdﬁ, shown by the curve.
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7. Variability in the Standard Deviation of Simulated SDMs

Now, consider the (exact) sampling distributid,, , of the standard deviations; , of

simulated SDMs. Figure 5 illustratesg , for N = 100 samples of size= 5,n = 15, anch = 30

taken from the Mira Beach incomes. That is, each of the values in the histograms in Figure 5 is
the standard deviation of a simulated SDM constructedM#tHL.00 values randomly selected

from X, . A vertical line representintpe standard deviation of the SDW)/+/n, (from Table J
is drawn on each plot. Note how, with increasing sample sjzetends to get closer to the
standard deviation it is estimating.

14
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Figure 5. Three samiing distributions of the standard deviations,, , of simulated SDMs
constructed usindyl = 100 samples taken from the Mira Beach incomes, for samples of size
5, 15, and 30. The vertical line is located #t/n.
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More generally, suppose that the population, with mgamd standard deviatioh, is normal
or the sample sizeis large enough so that the SD, , is approximately normal. Lef , be
the variance of a simulated SDM, , , composed o values randomly selected fro, .

The (exact) sampling distributioﬁf,N , of the variancessij, Is approximately normal for a

4
large number of samplég and has meafi(S;, )= 0/n and variance/ar(s2, )= % :
22 (N =

_1)Sj,N

These follow because the Opopulatiah)Gs N(u, oz/n), o) (v 7/ is y* with (ND1)
o’/n

degrees of freedom.

First, S,f,N is approximately normal for any reasonably large number of sanhylbscause a

x° distribution with large degrees of freedom is approximately normal. Secgtd, a
distribution has a mean equal to its degrees of freedom, so,

E[%] =N-1 or E(S},)=0%/n

(Alternatively, the mean comdrom the fact that the sample variance is an unbiased estimator of
the variance of its populatiorX, .) Third, ay* distribution has a variance equal to twice its
degrees of freedom, so,

(N-DS2 ) _ sy 20"
Var(T/nj—z(N_l) or Var(SmN)— nQ(N—l)

4

The formulas forE(Sj,N) and Var(S,f,N) show that, for fixedN, the larger the sample simethe

closers; , tends to be tey*/n. Further, for any two sample sizesandn, the ratio of the

variances ofs; , and S, , does not depend dw

20"

Var($,4) i (N-1) _n}

2

Var(sp ) _20°
ny (N-1)
Thus, as with the meaimcreasing the numbef samplesN, does not change the pattern
students see.

8. Discussion

When using the properties of the sampling distribution of the mean, students must understand
that, for all sample sizes, the mean of the SDM is (exactly) equal to the mean of the population

and the standard deviation is (exactly) equaltgn. However, wenhave shown that from

16
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observing the patterns in a typical series of simulated SDMs constructed using increasing sample
sizes, students are led to conclude that the mean tends to get closer to the population mean as the
sample size increases and the stashdawiation tends to get closer!tgy/n as the sample size
increases. This creates a mismatch between the theory we want to teach and what students
observe from their simulations.

There are at least two reasons, other than simulation, why students ralpdbis
misunderstanding. One is that students have a tendency to believe that everything gets better
with a larger sample size, which generally is a useful belief to hold. A second reason is the
ambiguous summary of the properties of the SDM commanigd in textbooks:

When n is sufficiently large, the sampling distribution of the mean is approximately normal
with meanu and standard deviation/+/n.

This statement inadvertently reinforces what students are likely to oliseesr simulation,
thatn must be sufficiently large faachproperty to hold.

What can be done by an instructor who wishes to use simulation to illustrate the properties of the
SDM? We offer three choices, none of them ideal. First, an instructobeleves that honesty

is the best policy could warn students that the pattern they see is an artifact of using simulation to
construct an approximate SDM. The simple and intuitive argument that the mean of a simulated
SDM, constructed from random sampkeach of size, can be found either by averaging the

means of thé&l samples or by averaging th#l individual values makes it clear why the variance

of a simulated SDM depends on both the sample sjzmd the number of samplés,

However, even thisnsall amount of theory may be problematic for an introductory statistics

class as the discussion would be time consuming and largely irrelevant to the goals of the course.

Second, an instructor could push the bounds of the teaching axiom Otell thestnuh the
whole truthO and use a very large number of sanilés construct each simulated sampling
distribution. As we have seen, this does not change the pattern thaf\vgiexed, the larger
the sample sizm, the more precise the estimatefgf = i tends to be and the closer the

standard deviation of the simulated sampling distribution tends todye/t0. However with
large enouglN, the program could be set to display a small number of decimal places in
summary statisticsosthat rounebff error will obscure the pattern.

Third, an instructor could use simulation only to introduce the Central Limit Theorem, justifying
the first two properties by example or mathematical methods. For example, students could
construct an exastampling distribution from a small population, verifying thgt = u and

Oy = O'/\/;. A caveat about this approach is that, when students list all possible samples from a

finite population to justify that X =1 /\/; their instructor would be forced to be explicit that

the sampling must be done with replacement, which students find unrealistic and hence
unconvincing. The finite population issue can be dodged by using a probability distributih

as the mean of the rolls of two dice, but introductory students see such a distribution as different
from a sampling distribution. While mathematical proofs are beyond the introductory course,
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some students are convinced by the argument thathtisusly true thay, = 1 and

Iy =! /N for the smallest possible sample size;, 1.

Whatever strategy the instructor chooses, it is especially important that he or she summarize the
properties of the SDM to emphas the role of sample size:

No matter what the sample size, n, the sampling distribution of the mean hag raadn

standard deviatiom /+/n. The sampling distribution will be normal in shape if the
population is normal; for othrepopulations, the shape becomes more normal as n increases.

In this paper, we have presented the mathematical reason why students who observe simulated
sampling distributions of the mean may develop or reinforce the misunderstanding that the

formulas for its mean and standard deviatipgn, =y and! X =1 /\/; are exactly true only in

the limit asn becomes large. While we know that this misunderstanding has occurred with some
of our own students, we do not know the extent to which it occurs in general or whether it can
develop solely as a result of simulation. Such a misunderstanding is unlikélgdbstudent
performance in introductory classes because the sample size in textbook problems involving
skewed distributions must be large enough for the Central Limit Theorem to ensure approximate
normality of the SDM. However, such a misunderstandiag oontribute to unwarranted

distrust of statistical inference, especially when using small samples. Thus, we look forward to
future research on studentsO thinking about the SDM and about how instructors can use
simulation to teach the SDM without fostegisuch misunderstandings.

We are sorry to present another instance where eternal vigilance is the price of teaching statistics.
However, we hope we have convinced instructors, especially those who use simulation to
illustrate the properties of the samglidistribution of the mean, to be alert to the fact that

students may apply the heuristic that otherwise serves them well, Obigger samples are better,O to
decide when they can use the formulas for the mean and standard deviation of a sampling
distribution.
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